Abstract

BackgroundThis study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards.MethodsFifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, Emax), quantitative DCE-MRI parameters (volume transfer constant, Ktrans; interstitial volume, Ve; and efflux rate constant, Kep), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni’s multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters.ResultsIn the OVX group, the Emax values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The Ktrans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the Ve values decreased significantly only at week 9 (p=0.032), and no difference in the Kep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of Emax and a strong positive correlation of Ktrans with MVD were found.ConclusionsCompared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter Ktrans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

Highlights

  • This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography and histopathology as the gold standards

  • Semi-quantitative DCE-MRI analysis At baseline, no significant difference was found in the Maximum enhancement (Emax) between two groups (p = 1.000)

  • The Emax values of the OVX group decreased compared with that of the control group from week 3 on, the only significant differences were at weeks 6 and 9 (p values were 0.003 and 0.004, respectively, for weeks 6 and 9)

Read more

Summary

Introduction

This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. The pathophysiology of OP includes hormonal, microenvironmental, and genetic determinants which have been associated with a misbalance between bone formation and resorption. A hypothetic pathophysiological mechanism for OP has been proposed involving reduced perfusion within the bone marrow which may affect the bone marrow microenvironment [1, 2]. We aimed to compare the performances between semi-quantitative and quantitative DCE-MRI in the evaluation of bone marrow blood perfusion in a rat OP model after ovariectomy (OVX), regarding micro-computed tomography (micro-CT) and histopathological results as a referential gold standard. The effects of two techniques on early diagnosis of OP were evaluated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.