Abstract

Comparison between a semi-analytical and two- and-three dimensional computational fluid dynamics (2D and 3D CFD) models is reported. The models take into account effects of temperature rise and losses of alkali atoms due to ionization and chemical reactions, resulting in a decrease of the slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. Both models are applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowinggas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. Comparison of the models applied to the flowinggas DPAL shows that for low pump power both models predict very close values of the laser power; however, at higher pump power, corresponding to saturation of the absorption of the pump transition, the values of the laser power calculated using the 2D CFD model are much higher than those obtained using the semi-analytical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.