Abstract
Three classification techniques (loading and score projections based on principal components analysis (PCA), cluster analysis (CA) and self-organizing maps (SOM)) were applied to a large environmental data set of chemical indicators of river water quality. The study was carried out by using long-term water quality monitoring data. The advantages of SOM algorithm and its classification and visualization ability for large environmental data sets are stressed. The results obtained allowed detecting natural clusters of monitoring locations with similar water quality type and identifying important discriminant variables responsible for the clustering. SOM clustering allows simultaneous observation of both spatial and temporal changes in water quality. The chemometric approach revealed different patterns of monitoring sites conditionally named “tributary”, “urban”, “rural” or “background”. This objective separation could lead to an optimization of river monitoring nets and to a better tracing natural and anthropogenic changes along the river stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.