Abstract

Colorectal cancer (CRC) is a leading cause of morbidity and death worldwide. As current cancer drugs are ineffective, new solutions are being sought in other fields, including nanoscience. Similarly, silver nanoparticles play an important role in the pharmaceutical industry as they act as anti-cancer agents with less harmful effects and are usually 1 to 100nm in size. Selenic acid (SA) and pyruvic acid (PA) are involved in various metabolic pathways in cancer. For this reason, we decided to detect their influence on colorectal cancer using silver-based (Ag) nanocarriers. DLS, Zetasizer, SEM and UV-Vis analyses were used to characterize AgSA and AgPA. A UV spectrophotometer was used to analyze the release of the NPs. MTT analyses were used to measure the viability of HCT116 and HUVEC cells, and IC50 values were calculated using GraphPad Prism. The indicated dosage and particle size of AgSA NPs proved to be suitable for cytotoxicity. Moreover, injection of these nanoparticles into non-cancer cells proved safe due to their minimal toxicity. In contrast, the AgPA NPs have no cytotoxicity and induce proliferation of HCT116 cells. Finally, only the synthesised AgSA nanoparticles could be used for advanced cancer therapy, which is both inexpensive and has minimal side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.