Abstract

AbstractA project manager balances the resource allocation using resource leveling algorithms after assigning resources to project activities. However, resource leveling does not ensure optimized allocation of resources. Furthermore, the duration and cost of a project may increase after leveling resources. The objectives of resource allocation optimization used in our research are to (i) increase resource utilization, (ii) decrease project cost, and (iii) decrease project duration. We implemented three search-based software engineering algorithms, i.e. multiobjective genetic algorithm, multiobjective particle swarm algorithm (MOPSO), and elicit nondominated sorting evolutionary strategy. Twelve experiments to optimize the resource allocation are performed on a published case study. The experimental results are analyzed and compared in the form of Pareto fronts, average Pareto fronts, percent increase in resource utilization, percent decrease in project cost, and percent decrease in project duration. The experimental results show that MOPSO is the best technique for resource optimization because after optimization with MOPSO, resource utilization is increased and the project cost and duration are reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.