Abstract

Seagrass beds play an ecological role in the shallow marine environment, such as a habitat for biota, primary producers, and sediment traps. They also act as nutrient recyclers. Since they have such an important role, this natural resource needs to be preserved. Therefore, continuous monitoring and mapping of seagrass beds, especially by remote sensing methods, is paramount. The current rapid development of satellite sensor technology, especially its spatial and spectral resolutions, has improved the quality of the seagrass distribution map. The use of proper classification methods and schemes in the classification of seagrass distribution based on satellite imagery can affect the accuracy of the map, which is why various alternative algorithm studies are required. In this study, the support vector machine and fuzzy logic algorithms were used to classify the WorldView-2 and Sentinel-2 satellite imagery on Kodingareng Lompo Island with four classes of seagrass cover, sparse (0–25%), moderate (26–50%), dense (51–75%), and very dense (76–100%). The result showed that the fuzzy logic algorithm applied to WorldView-2 imagery has the best overall accuracy of 78.60% seagrass cover classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.