Abstract

Comparison of data from functional mapping carried out on scorpion and sea anemones toxins blocking currents through voltage-gated potassium channels revealed that, despite their different 3D structures, the binding cores of these toxins displayed some similarities. Further molecular modeling studies suggested that these similarities reflect the use by these toxins of a common binding mode to exert their blocking function. Therefore, scorpion and sea anemone toxins offer an example of mechanistic convergent evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.