Abstract

The psi-angle model and the equivalent tilt (ET) model have been widely used for in-flight alignment (IFA) to align and to calibrate a strapdown inertial navigation system (SDINS) on a moving base. However, these models are not effective for a system with large attitude errors because the neglected error terms in the models degrade the performance of a designed filter. In this paper, with an odometer as an external aid, a velocity-aided SDINS is designed for IFA. Equivalent error models applicable to IFA with large attitude errors are derived in terms of rotation vector error and additive and multiplicative quaternion errors. It is found that error models in terms of additive quaternion error (AQE) become linear. Thus the proposed error models reduce unmodeled error terms for a linear filter. From a number of van tests, it is shown that the proposed error models effectively improve the performance of IFA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.