Abstract

Introduction: Previously, we introduced the biogenic conduit (BC) as a novel autologous nerve conduit for bridging peripheral nerve defects and tested its regenerative capacity in a short- and long-term setting. The aim of the present study was to clarify whether intraluminal application of regeneration-promoting glial cells, including Schwann cells (SC) and olfactory ensheathing cells (OEC), displayed differential effects after sciatic nerve gap bridging. Material and Methods: BCs were generated as previously described. The conduits filled with fibrin/SC (n = 8) and fibrin/OEC (n = 8) were compared to autologous nerve transplants (NT; n = 8) in the 15-mm sciatic nerve gap lesion model of the rat. The sciatic functional index was evaluated every 4 weeks. After 16 weeks, histological evaluation followed regarding nerve area, axon number, myelination index and N ratio. Results: Common to all groups was a continual improvement in motor function during the observation period. Recovery was significantly better after SC transplantation compared to OEC (p < 0.01). Both cell transplantation groups showed significantly worse function than the NT group (p < 0.01). Whereas nerve area and axon number were correlated to function, being significantly lowest in the OEC group (p < 0.001), both cell groups showed lowered myelination (p < 0.001) and lower N ratio compared to the NT group. Discussion: SC-filled BCs led to improved regeneration compared to OEC-filled BCs in a 15-mm-long nerve gap model of the rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call