Abstract

The stress corrosion cracking (SCC) behavior of 304L B4 grade borated stainless steel (SS) as well as 304L SS was investigated by constant load and slow strain rate testing (SSRT) techniques. The microstructure, pitting, and SCC behavior of borated SS in the as-received, sensitized, and solution-annealed conditions were analyzed. Potentiodynamic anodic polarization and double loop electrochemical potentiokinetic reactivation (DLEPR) experiments were carried out to find out pitting corrosion resistance and degree of sensitization (DOS). The number of boride particles (composed of Cr, Fe, and B) were highest for the specimen solution annealed at 1423 K/2 h. Solution-annealing treatment at 1423 K/4 h was found to be beneficial in improving the corrosion resistance of borated 304L SS. Although the borated 304L SS exhibited a higher DOS, it showed improved pitting corrosion resistance compared to 304L SS. Constant load experiments revealed the time to failure to be the highest for the specimen solution annealed at 1423 K/4 h. SCC susceptibility index (Iscc) values obtained from SSRT tests were lower for solution-annealed borated 304L SS compared to the as-received and sensitized conditions. The improved SCC resistance of borated 304L SS was attributed not only to the solution-annealing treatment but also the higher stacking fault energy (SFE) value compared to 304L SS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call