Abstract

We analyzed 37 satellite reflectance algorithms and 321 variants for five satellites for estimating turbidity in a freshwater inland lake in Ohio using coincident real hyperspectral aircraft imagery converted to relative reflectance and dense coincident surface observations. This study is part of an effort to develop simple proxies for turbidity and algal blooms and to evaluate their performance and portability between satellite imagers for regional operational turbidity and algal bloom monitoring. Turbidity algorithms were then applied to synthetic satellite images and compared to in situ measurements of turbidity, chlorophyll-a (Chl-a), total suspended solids (TSS) and phycocyanin as an indicator of cyanobacterial/blue green algal (BGA) abundance. Several turbidity algorithms worked well with real Compact Airborne Spectrographic Imager (CASI) and synthetic WorldView-2, Sentinel-2 and Sentinel-3/MERIS/OLCI imagery. A simple red band algorithm for MODIS imagery and a new fluorescence line height algorithm for Landsat-8 imagery had limited performance with regard to turbidity estimation. Blue-Green Algae/Phycocyanin (BGA/PC) and Chl-a algorithms were the most widely applicable algorithms for turbidity estimation because strong co-variance of turbidity, TSS, Chl-a, and BGA made them mutual proxies in this experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.