Abstract

Diffusion Spectrum Imaging enables to reconstruct the ensemble average propagator (EAP) at the expense of having to acquire a large number of measurements. Compressive sensing offers an efficient way to decrease the required number of measurements. The purpose of this work is to perform a thorough experimental comparison of three sampling strategies and six sparsifying transforms to show their impact when applied to accelerate compressive sensing-diffusion spectrum imaging. We propose a novel sampling scheme that assures uniform angular and random radial q-space samples. We also compare and implement six discrete sparse representations of the EAP and thoroughly evaluate them on synthetic and real data using metrics from the full EAP, kurtosis, and orientation distribution function. The discrete wavelet transform with Cohen-Daubechies-Feauveau 9/7 wavelets and uniform angular sampling in combination with random radial sampling showed to be better than other tested techniques to accurately reconstruct the EAP and its features. It is important to jointly optimize the sampling scheme and the sparsifying transform to obtain accelerated compressive sensing-diffusion spectrum imaging. Experiments on synthetic and real human brain data show that one can robustly recover both radial and angular EAP features while undersampling the acquisition to 64 measurements (undersampling factor of 4).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.