Abstract

Two external metabolizing systems, S9 mix from Aroclor-induced rat livers and freshly isolated hepatocytes, were used for activation in cultures of human lymphocytes and V79 cells. 7, 12-dimethylbenzanthracene (DMBA) and aflatoxin B1 (AFB1) were employed as indirectly acting reference mutagens. Mutagenic effects were measured by induction of sister chromatid exchange (SCE). With DMBA, SCE-inducing effects were found to be quite similar after activation by S9 mix and activation by hepatocytes. In human lymphocytes nearly the same dose-effect relationships were found with both metabolizing systems; in V79 cells the hepatocyte-mediated induction of SCE was detectable at slightly lower concentrations than the S9-mediated SCE induction. In contrast with AFB1, S9 activation led to a stronger SCE induction than hepatocyte activation in both target cells. The induction of chromosomal aberrations by AFB1 after activation by the two metabolizing systems was also analysed in V79 cells. This experiment again revealed that AFB1 was more efficiently activated by S9 mix than by hepatocytes, and it appeared that AFB1 is a more potent inducer of chromosomal aberrations than of SCE. The different activation capacities of the two metabolizing systems for AFB1 may be due to the maintenance of inactivation mechanisms in hepatocytes or to the Aroclor induction of the S9 fraction. Our experiments have shown that the suitability of hepatocytes as an activation system is not restricted to microbial or eukaryotic point mutation assays, but that hepatocyte metabolism can also be successfully included in cytogenetic tests with short- and long-term cultures of mammalian target cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call