Abstract

The reinforcement of a natural rubber compound by various surface-modified precipitated silicas was compared. Compound physical properties were determined for two silicas differing in surface area and were used as controls to evaluate these silicas after surface modification by using either a bifunctional organosilane coupling agent (γ-mercaptopropyl–trimethoxysilane) or a new surface modification process. This new process is based on the in situ polymerization of organic monomers solubilized inside surfactant bilayers that are adsorbed onto the silica surface to afford silicas modified with styrene–butadiene and styrene–isoprene copolymers. Both surface modification processes afford materials that dramatically increase the compound cure rate, thereby significantly reducing T90 cure times, while also improving tensile properties, tear strength, abrasion resistance, and compression set of the cured compound. The silane-modified silica gives a higher flex-cracking resistance than do the silicas modified by the in situ polymerization of organic monomers, whereas these latter silicas significantly increase rebound resilience and offer greater overall improvements in rubber compound performance. The rubber compound physical properties obtained using the modified, higher surface area Hi-Sil® 255 silica are generally improved relative to those obtained using the modified Hi-Sil® 233 silica. © 1996 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.