Abstract

An accurate, precise, sensitive and reproducible High-performance liquid chromatographic (HPLC) and UV spectrophotometric methods were developed and validated for the quantitative determination of haloperidol (HPD) in bulk drug and pharmaceutical formulation. Different analytical performance parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD) and limit of quantification (LOQ) were determined according to International Conference on Harmonization ICH Q2B guidelines. The RP-HPLC method was developed by the isocratic technique on a reversed-phase Thermo C18 (250 × 4.6 mm, 5µm) column with mobile phase consisting of Methanol: Acetonitrile (50:50v/v) at flow rate of 1.0 ml/min. The retention time for HPD was 2.238±0.3min. The UV spectrophotometric determinations were performed at 244 nm using 80% methanol as a solvent. The linearity range for HPD was 5-25 μg/ml for both HPLC and UV method. The linearity of the calibration curves for each analyte in the desired concentration range was good (r2 >0.999) by both the HPLC and UV methods. The method showed good reproducibility and recovery with percent relative standard deviation less than 2%. Moreover, the accuracy and precision obtained with HPLC co-related well with the UV method which implied that UV spectroscopy can be a cheap, reliable and less time consuming alternative for chromatographic analysis. The proposed methods are highly sensitive, precise and accurate and hence successfully applied for determining the assay and in vitro dissolution of a marketed formulation.
 Keywords: HPLC, UV Spectrophotometry, Haloperidol, Pharmaceutical formulation, Method validation, Quantitative analysis

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call