Abstract

Summary1. Reduced metabolic rate among cave organisms compared with surface species has long been suggested as an adaptation to food shortage in cave environments. However, comparisons of metabolic rates between species have not often included closely related surface and cave species. By measuring metabolic rate across three seasons and over a range of body sizes, we examined the hypothesis that the routine metabolic rate of Gammarus acherondytes, a federally listed stygobitic amphipod, is lower than that of the closely related stygophilic Gammarus troglophilus. To determine if human activities increased the supply of organic matter to caves, we also examined the relationship between residential development and bacterial contamination in water wells.2. For G. acherondytes, the slope of the overall relationship between oxygen consumption and body dry mass did not differ from zero and did not vary seasonally, whereas for G. troglophilus it was positive and higher in summer than in winter and spring. These results provide insights into a potential novel metabolic adaptation among stygobites. Higher metabolic rate in young G. acherondytes would allow efficient use of typically transient energy sources and a low metabolic rate at larger body sizes would increase survival through periods of food scarcity.3. The number of wells with faecal coliform contamination was weakly but positively correlated with the number of residential building permits, indicating that surface land‐use changes probably increase the availability of energy in groundwater systems inhabited by G. acherondytes. This may give stygophilic animals, with higher metabolic rates, a competitive advantage in the caves, thus reducing the abundance of stygobites such as G. acherondytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call