Abstract
In Nigeria, literature on the integration of traffic of pavement condition and traffic characteristics in predicting road traffic accident frequency on 2-lane highways are scanty, hence this article to fill the gap. A comparison of road traffic accident frequency prediction models on IIesha-Akure-Owo road based on the data observed between 2012 and 2014 is presented. Negative Binomial (NB), Ordered Logistic (OL) and Zero Inflated Negative Binomial (ZINB) models were used to model the frequency of road traffic accident occurrence using road traffic accident data from the Federal Road Safety Commission (FRSC) and pavement conditions parameters from pavement evaluation unit of the Federal Ministry of Works, Kaduna. The explanatory variables were: annual average daily traffic (aadt), shoulder factor (sf), rut depth (rd), pavement condition index (pci), and international roughness index (iri). The explanatory variables that were statistically significant for the three models are aadt, sf and iri with the estimated coefficients having the expected signs. The number of road traffic accident on the road increases with the traffic volume and the international roughness index while it decreases with shoulder factor. The systematic variation explained by the models amounts to 87.7, 78.1 and 74.4% for NB, ZINB and OL respectively. The research findings suggest the accident prediction models that should be integrated into pavement rehabilitation.
 
 Keywords: 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Natural Sciences Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.