Abstract

This study was intended to compare the therapeutic efficacies of NEP1-40 and SiNgR199 on treating spinal cord injury (SCI). Nogo-A, growth associated protein 43 (GAP-43), microtubule associated protein 2 (MAP-2), and amyloid βA4 precursor protein (APP) expressions were determined using western blot and quantitative PCR. Neurite outgrowth detected the growth of neurites, and BDA anterograde tracing was used to label the regenerated axonal. Rats' behavior was assessed with Basso, Beattie, and Bresnahan locomotor rating scale (BBB). Somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) were recorded to evaluate the recovery of the sensory and motor systems. Successful establishment of SCI model was verified by immunocytochemical analysis. The increased expression of APP, as well as the decreased expression of GAP-43 and MAP-2, was observed in the SCI model group, but the trends were reversed after the treatments of NEP1-40, siNgR199, and NEP1-40 + siNgR199. Compared with the SCI group, the average neurite length and the BDA-positive fibers were increased in the NEP1-40, siNgR199, and NEP1-40 + siNgR199 groups. The rats in the siNgR199 group and the NEP1-40 + siNgR199 group both showed significantly higher BBB scores than SCI model group and NEP1-40 group. Suggested by electrophysiological evaluation, both the latency and the amplitude of SEPs as well as MEPs had recovered in the NEP1-40, siNgR199, and NEP1-40 + siNgR199 groups after SCI. Both NEP1-40 and siNgR had repairing effects on SCI, suggesting their role in facilitating axonal regeneration after SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call