Abstract
Purpose. To compare the biomechanical properties of porcine, rabbit, and human sclera before and after riboflavin/ultraviolet-A (UVA) collagen cross-linking (CXL). Methods. Eight rabbits, 8 porcine eyeballs, and 8 human eyeballs were included. One rabbit eye and half of each bisected human and porcine eyeball were treated with riboflavin/UVA CXL. Untreated fellow rabbit eyes and eyeball halves served as controls. A 10 mm × 20 mm scleral band was harvested from each specimen. From this band, two 3.5 mm × 15.0 mm strips were prepared for biomechanical testing. The biomechanical parameters were ultimate stress, stress and Young's modulus. Results. Values of stress, and Young's modulus showed that human sclera was 4 times stiffer than porcine sclera and 3 times stiffer than rabbit sclera. In rabbit sclera, both the stress and Young's modulus were significantly increased by CXL (P < 0.05). In porcine sclera, only the ultimate stress was significantly increased by CXL (P < 0.05). The biomechanical properties of human sclera were not statistically affected by CXL (P > 0.05). Conclusions. Human sclera has higher biomechanical stiffness than porcine and rabbit sclera. With the same irradiation dose, riboflavin/UVA CXL increases the biomechanical stiffness of rabbit sclera but not porcine or human sclera.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.