Abstract

Polymerase chain reaction (PCR) is an important molecular biology technique for in vitro amplification of nucleic acids. Reverse transcriptase quantitative PCR (RT-qPCR) and more recently reverse transcriptase digital droplet PCR (RT-ddPCR) have been developed for the quantification of nucleic acids. We developed an RT-ddPCR assay for the quantification of attenuated dengue virus serotype 2 nucleic acid and compared it with a routine RT-qPCR assay. While the routine RT-qPCR assay targets the NS5 gene, the E gene was selected for the optimization of the RT-ddPCR assay conditions. The specificity of the assay was demonstrated using the attenuated dengue virus serotype 2 alone and in the presence of the other three dengue serotypes. The results from both assays for 25 samples of the attenuated dengue virus serotype 2 were found to be comparable, with an R2 from the linear regression analysis of >0.98. A major advantage of the RT-ddPCR assay is that it allows quantification of nucleic acid, without the need of a standard curve. RT-ddPCR can be implemented for the absolute quantification of dengue vaccine virus nucleic acid during the vaccine manufacturing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.