Abstract

AbstractPile foundations are the most vulnerable components of the entire structure and are prone to failure due to earthquake loading. Thus it is mandatory for proper seismic analyses to be conducted with the incorporation of all the necessary influencing factors to ensure no failure occurs to the pile foundation. Even though dynamic analysis has been the conventional seismic analysis method, a new nonlinear static analysis known as pushover analysis is seen to realistically predict earthquake response of the pile. This calls for proper research to be conducted to check if static pushover analysis can be used as an alternative to dynamic analysis for seismic analysis of structures to save time and ease on the complexity of dynamic analysis. In this research work, single piles of different diameter have been taken into consideration which has been embedded in stratified soil containing layers of different soil types. Dynamic analysis and static pushover analysis have been conducted for each case to compare the results of both the analyses. The Finite Element modeling as well as the analyses has been conducted in the user friendly interface of OpenSees known as OpenSees PL. From the results obtained, it is seen that pushover analysis can estimate the maximum bending moment witnessed by the pile while taking into account the effects of surrounding soil condition on it due to earthquake loading. Similar results of maximum bending moment have been obtained for both the analyses.sKeywordsPushover analysisDynamic analysisOpenSees PL

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.