Abstract
In this work, we report the comparison of regression methods in a long-period grating (LPG) for transverse strain measurement. We analyze the transverse strain sensing characteristics, such as load intensity and azimuthal angle, based on the birefringence effect induced in LPG sensor. Therefore, we employ the different orthogonal responses of the grating to develop regression methods, which allow the estimation of the strain behavior of the LPG sensor. The predictive performances of these interrogation models are compared in terms of square correlation coefficient (R2) and root mean square error (RMSE). Finally, the results indicate that the best method to predict load intensity is the Fourth-Degree Polynomial Fit, whereas the artificial neural network (ANN) model could be successfully employed to predict the azimuthal angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.