Abstract

This paper focuses on the performance of two regression-based and one Inverse Distance Weighted (IDW) and two combined versions of IDW methods for interpolation of daily mean temperature at the Black Sea Region of Turkey. Simple linear regression (SLR) and multiple linear regression (MLR) are used as regression-based methods. Combinations of IDW with TLR (temperature lapse rate) and gradient plus inverse distance squared (GIDS) are used as combined versions of IDW. This study targets to compare five spatial interpolation methods based on RMSE (root-mean-square error) statistics of interpolation errors for daily mean temperatures from 1981 to 2012. In order to compare the interpolation errors of the five methods, the leave-one-out cross-validation method was applied over long periods of 32 years on 52 different sites. The algorithms of the five interpolation methods’ codes were written in MATLAB by the authors of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.