Abstract

Here we compare a recently proposed method and software package, regmed, with our own previously developed package, BayesNetty, designed to allow exploratory analysis of complex causal relationships between biological variables. We find that regmed generally has poorer recall but much better precision than BayesNetty. This is perhaps not too surprising as regmed is specifically designed for use with high-dimensional data. BayesNetty is found to be more sensitive to the resulting multiple testing problem encountered in these circumstances. However, as regmed is not designed to handle missing data, its performance is severely affected when missing data is present, whereas the performance of BayesNetty is only slightly affected. The performance of regmed can be rescued in this situation by first using BayesNetty to impute the missing data, and then applying regmed to the resulting "filled-in" data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.