Abstract

Neural networks (NNs) belong to ‘black box’ models and therefore ‘suffer’ from interpretation difficulties. Four recent methods inferring variable influence in NNs are compared in this paper. The methods assist the interpretation task during different phases of the modeling procedure. They belong to information theory (ITSS), the Bayesian framework (ARD), the analysis of the network's weights (GIM), and the sequential omission of the variables (SZW). The comparison is based upon artificial and real data sets of differing size, complexity and noise level. The influence of the neural network's size has also been considered. The results provide useful information about the agreement between the methods under different conditions. Generally, SZW and GIM differ from ARD regarding the variable influence, although applied to NNs with similar modeling accuracy, even when larger data sets sizes are used. ITSS produces similar results to SZW and GIM, although suffering more from the ‘curse of dimensionality’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.