Abstract

Droplet digital polymerase chain reaction (ddPCR) is one of the newest and most promising tools providing absolute quantification of target DNA molecules. Despite its emerging applications in microorganisms, few studies reported its use for detecting lactic acid bacteria. This study evaluated the applicability of a ddPCR assay targeting molecular genes obtained from in silico analysis for detecting Lactiplantibacillus plantarum subsp. plantarum, a bacterium mainly used as a starter or responsible for fermentation in food. The performance characteristics of a ddPCR were compared to those of a quantitative real-time PCR (qPCR). To compare the linearity and sensitivity of a qPCR and ddPCR, the calibration curve for a qPCR and the regression curve for a ddPCR were obtained using genomic DNA [102–108 colony-forming units (CFU)/mL] extracted from a pure culture and spiked food sample. Both the qPCR and ddPCR assays exhibited good linearity with a high coefficient of determination in the pure culture and spiked food sample (R2 ≥ 0.996). The ddPCR showed a 10-fold lower limit of detection, suggesting that a ddPCR is more sensitive than a qPCR. However, a ddPCR has limitations in the absolute quantitation of high bacterial concentrations (>106 CFU/mL). In conclusion, a ddPCR can be a reliable method for detecting and quantifying lactic acid bacteria in food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call