Abstract

The exact analytical solution for the plane S-wave, propagating along the axis of spirality in the simple 1-D anisotropic “simplified twisted crystal” model, is compared with four different approximate ray-theory solutions. The four different ray methods are (a) the coupling ray theory, (b) the coupling ray theory with the quasi-isotropic perturbation of travel times, (c) the anisotropic ray theory, (d) the isotropic ray theory. The comparison is carried out numerically, by evaluating both the exact analytical solution and the analytical solutions of the equations of the four ray methods. The comparison simultaneously demonstrates the limits of applicability of the isotropic and anisotropic ray theories, and the superior accuracy of the coupling ray theory over a broad frequency range. The comparison also shows the possible inaccuracy due to the quasi-isotropic perturbation of travel times in the equations of the coupling ray theory. The coupling ray theory thus should definitely be preferred to the isotropic and anisotropic ray theories, but the quasi-isotropic perturbation of travel times should be avoided. Although the simplified twisted crystal model is designed for testing purposes and has no direct relation to geological structures, the wave-propagation phenomena important in the comparison are similar to those in the models of the geological structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call