Abstract
Rates of penetration through the cuticle of amphiphylic analogs, synthesized by addition of 6-phenylhexanoic acid or 9-fluoreneacetic acid or 1-pyrenebutyric acid to the amino terminus of the pentapeptide Phe-Thr-Pro-Arg-Leu-amide, were assessed by quantitative analysis using reversed phase liquid chromatography. The analogs effectively penetrated the cuticle of both the adult American cockroach and tobacco budworm moth. However, the amounts of analogs that penetrated the cuticle of the cockroach were significantly lower and the rates of penetration were slower than for moth cuticle. Penetration of the analogs through the cuticle was dependent upon the size of the lipidic attachment to the pentapeptide. The 6-phenylhexanoic acid analog penetrated most rapidly followed by the 9-fluoreneacetic acid analog and the 1-pyrenebutyric acid analog penetrated slowest. All of the analogs exhibited an initial rapid period of penetration lasting 2–3 h followed by the establishment of a steady slow release state which lasted between 9–24 h and was dependent upon both the size and surface area of the aromatic lipidic portion of the analog and species of insect to which the analog was applied. The results confirmed the hypothesis that the insect cuticle could be employed as a slow release device for delivery of analogs of insect neuropeptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.