Abstract
We develop some mathematical tools for comparison of rates of fixed versus variable basis function approximation. Using these tools, we describe sets of multivariable functions, for which lower bounds on worst-case errors in approximation by n-dimensional linear subspaces are larger than upper bounds on such errors in approximation by perceptron networks with n hidden units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.