Abstract

This paper discusses the use of several rank-based virtual screening methods for prioritizing compounds in lead-discovery programs, given a training set for which both structural and bioactivity data are available. Structures from the NCI AIDS data set and from the Syngenta corporate database were represented by two types of fragment bit-string and by sets of high-level molecular features. These representations were processed using binary kernel discrimination, similarity searching, substructural analysis, support vector machine, and trend vector analysis, with the effectiveness of the methods being judged by the extent to which active test set molecules were clustered toward the top of the resultant rankings. The binary kernel discrimination approach yielded consistently superior rankings and would appear to have considerable potential for chemical screening applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.