Abstract
Bridge deck deterioration modeling is critical to infrastructure management. Deterioration modeling is traditionally done using deterministic models, stochastic models, and recently basic machine learning methods. The advanced machine learning-based survival models, such as random survival forest, have not been adapted for use in infrastructure management. This paper introduces random survival forest models for bridge deck deterioration modeling and compare their performance with a commonly used traditional stochastic model, that is, the Weibull distribution-based accelerated failure time (AFT-Weibull) model. To better adapt the random survival model for bridge deck deterioration modeling, the selection of the dependent variables is discussed between two variables: time-in-rating, and cumulative truck traffic. Inspection data from about 22,000 state-owned bridge decks in Pennsylvania are used to validate and test the performance of the models. The results suggest that cumulative truck traffic is more suitable to be selected as the dependent variable when analyzing the reliability of the bridge deck. Further, the random survival forest model outperformed the AFT-Weibull model in predictive accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.