Abstract

Space-born optical systems must be tolerant to radiation to guarantee that the required system performance is maintained during prolonged mission times. The radiation-induced absorption in optical glasses is often related with the presence of impurities, which are, intentionally or not, introduced during the manufacturing process. Glass manufacturers use proprietary fabrication processes and one can expect that the radiation sensitivity of nominally identical optical glasses from different manufacturers is different. We studied the gamma-radiation induced absorption of several crown glasses with n<sub>d</sub> &#8776; 1.516 and v<sub>d</sub> &#8776; 64, i.e. NBK7 (Schott), S-BSL7 (Ohara), BSC 517642 (Pilkington) and K8 (Russia). NBK7 recently replaced the well-known BK7. We therefore also compared the radiation response of NBK7 and BK7 glass. Our results show that whereas the glasses are optically similar before irradiation, they show a different induced absorption after irradiation and also different post-radiation recovery kinetics. Taking these differences into account can help to improve the radiation tolerance of optical systems for space applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.