Abstract

Abstract Numerical modeling of radiative transfer in nongray reacting media is a challenging problem in computational science and engineering. The choice of radiation models is important for accurate and efficient high-fidelity combustion simulations. Different applications usually involve different degrees of complexity, so there is yet no consensus in the community. In this paper, the performance of different radiative transfer equation (RTE) solvers and spectral models for a turbulent piloted methane/air jet flame are studied. The flame is scaled from the Sandia Flame D with a Reynolds number of 22,400. Three classes of RTE solvers, namely the discrete ordinates method, spherical harmonics method, and Monte Carlo method, are examined. The spectral models include the Planck-mean model, the full-spectrum k-distribution (FSK) method, and the line-by-line (LBL) calculation. The performances of different radiation models in terms of accuracy and computational cost are benchmarked. The results have shown that both RTE solvers and spectral models are critical in the prediction of radiative heat source terms for this jet flame. The trade-offs between the accuracy, the computational cost, and the implementation difficulty are discussed in detail. The results can be used as a reference for radiation model selection in combustor simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call