Abstract
In the present work we study the electronic transport properties of finite length single-wall carbon nanotubes (CNTs) by comparing three different theoretical frameworks. A simple model is used to describe the electrodes and the way they are attached to both ends of the CNT. Electron transport calculations are carried out on three different levels of sophistication. That are the Landauer transport formalism in combination with single-orbital tight-binding, extended Hückel theory or density functional theory. The quantum mechanical transmission which plays a central role in Landauer theory is calculated by means of equilibrium and non-equilibrium Green’s function methods. Results of the three approaches are compared and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.