Abstract

As semiconductor devices are scaled down to nanometer scale dimensions, quantum mechanical effects can become important. For many device simulations at normal temperatures, an efficient quantum correction approach within a semi-classical framework is expected to be a practical way applicable to multi-dimensional simulation of ultrasmall integrated devices. In this paper, we present a comparative study on the three quantum correction methods proposed to operate within the Monte Carlo framework, which are based on Wigner transport equation, path integrals, and Schrodinger equation. Quantitative comparisons for the strengths and weaknesses of these methods are discussed by applying them to size quantization and tunneling effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.