Abstract

ObjectiveAttention-deficit/hyperactivity disorder (ADHD) and tic disorder (TD) are among the most common comorbid psychopathologies and have a shared genetic basis. The psychopathological and neurophysiological aspects of the mechanism underlying the comorbidity of both disorders have been investigated, but the pathophysiological aspects remain unclear. Therefore, this study aimed to compare the neurophysiological characteristics of ADHD with those of TD using resting-state electroencephalography and exact low-resolution brain electromagnetic tomography (eLORETA) analysis.MethodsWe performed eLORETA analysis based on the resting-state scalp-recorded electrical potential distribution in 34 children with ADHD and 21 age-matched children with TD. Between-group differences in electroencephalography (EEG) current source density in delta, theta, alpha, beta, and gamma bands were investigated in each cortical region.ResultsCompared with the TD group, the ADHD group showed significantly increased theta activity in the frontal region (superior frontal gyrus, t = 3.37, p < 0.05; medial frontal gyrus, t = 3.35, p < 0.05). In contrast, children with TD showed decreased posterior alpha activity than those with ADHD (precuneus, t = −3.40, p < 0.05; posterior cingulate gyrus, t = −3.38, p < 0.05). These findings were only significant when the eyes were closed.ConclusionIncreased theta activity in the frontal region is a neurophysiological marker that can distinguish ADHD from TD. Also, reduced posterior alpha activity might represent aberrant inhibitory control. Further research needs to confirm these characteristics by simultaneously measuring EEG-functional magnetic resonance imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call