Abstract

Seedling vigour is one of the major determinants for stable stand establishment in rice (Oryza sativa), especially in a direct seeding cropping system. The objectives of this study were to identify superior alleles with consistent effects on seedling vigour across different temperature conditions and to investigate genotype x environmental temperature interactions for seedling vigour QTL. A set of 282 F13 recombinant inbred lines (RILs) derived from a rice cross were assessed for four seedling vigour traits at three temperatures (25 degrees C, 20 degrees C and 15 degrees C). Using a linkage map with 198 marker loci, the main-effect QTL for the traits were mapped by composite interval mapping. A total of 34 QTL for the four seedling vigour traits were identified. Of these QTL, the majority (82%) were clustered within five genomic regions, designated as QTL qSV-3-1, qSV-3-2, qSV-5, qSV-8-1 and qSV-8-2. All of these five QTL had small individual effects on the traits, explaining 3.1-15.8 % of the phenotypic variation with a mean of 7.3 %. QTL qSV-3-1, qSV-3-2 and qSV-8-1 showed almost consistent effects on the traits across all three temperatures while qSV-5 and qSV-8-2 had effects mainly at the 'normal' temperatures of 20 degrees C and 25 degrees C. Among the five QTL identified, all and four showed additive effects on shoot length and germination rate, respectively. The contributions of these five QTL to shoot length and germination rate were also much larger than those to the other two traits. A few of genomic regions (or QTL) were identified as showing effects on seedling vigour. For these QTL, significant genotype x environmental temperature interactions were found and these interactions appeared to be QTL-specific. Among the four seedling vigour traits measured, shoot length and germination rate could be used as relatively good indicators to evaluate the level of seedling vigour in rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.