Abstract

A b initio molecular orbital methods are used to study proton transfers in the cationic heterodimer (H3NHOH2)+ as well as the symmetric homodimers (H2OHOH2)+ and (H3NHNH3)+. All calculations are carried out at the Hartree–Fock level with a 4-31G basis set to ensure consistency. For proton transfers along a linear hydrogen bond in the heterodimer, asymmetric single-well potentials with a minimum corresponding to (NH4)+(OH2) are obtained for R(NO) distances of less than 2.85 Å. Longer intermolecular separations lead to appearance of a second minimum in the potential (NH3)(OH3)+. The energy barrier between these two minima is much greater for transfer from N to O than for the reverse O to N. Transfer barriers in the two homodimers lie between these two extremes, with interoxygen transfer barriers somewhat higher than for the internitrogen process. Barriers for all systems are found to be sensitive to angular deformations as well as stretches of the H bond. Electronic redistributions occurring at various stages of proton transfer are monitored by means of density difference maps and population analyses. Greater amounts of charge transferred from the proton-accepting molecule to the donor are associated with more facile proton transfers. The calculated energies of the lone pair orbitals of the proton-accepting atom provide another accurate indicator of the height of the barrier to proton transfer. These observations are explained in terms of fundamental principles of electronegativity and orbital interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.