Abstract

The objective of this study was to investigate the differences in protein modifications between pale, soft, and exudative (PSE) and red, firm, and nonexudative (RFN) pork during postmortem (PM) aging. Longissimus dorsi (LD) including 8 PSE and 8 RFN muscles were individually removed from 16 carcasses. These 16 LD muscles were vacuum packaged at 24 h after slaughter and stored at 4°C for 1, 3, and 5 d. The centrifugation loss, drip loss, color, protein solubility, protein oxidation, protein degradation including desmin, troponin T, and integrin, and μ-calpain activation were determined. The pH of PSE samples was significantly lower than that of RFN samples at both 1 and 24 h PM (P < 0.05). The L* values of PSE pork were significantly greater than that of RFN pork at different time point during PM storage (P < 0.01). The centrifugation loss of PSE samples at d 1 was extremely greater than samples from RFN pork (P < 0.01). The cumulative drip loss for d 0 to 1, d 0 to 3, and d 0 to 5 in PSE pork were significantly greater than that from RFN pork (P < 0.05). The carbonyl content of myofibrillar proteins was not significantly different between PSE and RFN pork samples (P > 0.05). In addition, PSE pork presented a lower solubility of sarcoplasmic protein, myofibrillar protein, and total protein than RFN pork except the solubility of myofibrillar protein at d 1 (P < 0.05). The intensity of intact desmin and troponin T 2 in PSE pork at d 3 and 5 were significantly greater than that in RFN pork (P < 0.05), whereas no significant difference was detected at d 1. The intensity of intact troponin T 1 in PSE pork at d 5 was greater than that in RFN pork (P < 0.05). However, more degradation products of integrin were detected in PSE pork compared to that of RFN pork at d 1 (P < 0.05). Red, firm, and nonexudative pork presented lower intensity of intact 80 kDa calpain and greater intensity of autolyzed 76 kDa product compared to PSE pork (P < 0.01). The results indicate that the degree of μ-calpain activation, the extent of protein degradation including desmin and integrin, and the level of protein solubility in PSE pork could contribute to its low water holding capacity during PM storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call