Abstract

The purposes of this research are to derive the equations of motion of a flexible single-link system by a finite-element method, to develop the computational codes in order to perform dynamics simulations with vibration control and to propose an effective control scheme of a flexible single-link manipulator using two control strategies, namely proportional-derivative (PD) and active-force (AF) controls. The flexible manipulator used in this paper consists of an aluminum beam as a flexible link, a clamp-part, a servo motor to rotate the link, and a piezoelectric actuator to control vibration. Computational codes on time history responses, FFT (Fast Fourier Transform) processing, and eigenvalues---eigenvectors analysis were developed to calculate the dynamic behavior of the link. Furthermore, the PD and AF control strategies were designed and compared their performances through the calculations. The calculated results show the superiority of the proposed AF control comparing the PD one to suppress the vibration of the flexible single-link manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.