Abstract

The in-situ damage progression in three carbon fibre reinforced cross-ply composite systems under tensile loading is examined, namely, carbon IM7/epoxy, carbon IM7/PEEK and carbon AS4/polyamide. Epoxy is a thermoset polymer while polyether ether ketone (PEEK) and polyamide are thermoplastic. The thermoset composite is manufactured in an autoclave using matrix pre-impregnated with unidirectional carbon fibres, while the thermoplastic composites are manufactured using laser-assisted automated tape placement (LATP). A tensile microtester is mounted in a scanning electron microscope to observe the damage mechanisms in-situ under tensile loading. X-ray computed tomography scans are also carried out to examine porosity in the material systems. IM7/epoxy and IM7/PEEK displayed similar damage mechanisms: transverse cracking in 90° plies followed by fibre breakage in the 0° plies at the fillets and interlaminar fracture. AS4/polyamide displayed a different mechanism with fibre fracture appearing first in the 0° plies, followed by transverse cracking and interlaminar fracture. The effect of autoclave treatment on the materials manufactured by LATP has also been examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call