Abstract
Near-infrared spectroscopy (NIRS) is a method for noninvasive estimation of cerebral hemodynamic changes. Principal component analysis (PCA) and independent component analysis (ICA) can be used for decomposing a set of signals to underlying components. Our objective is to determine whether PCA or ICA is more efficient in identifying and removing scalp blood flow interference from multichannel NIRS signals. Concentration changes of oxygenated (HbO(2)) and deoxygenated (HbR) hemoglobin are measured on the forehead with multichannel NIRS during hyper- and hypocapnia. PCA and ICA are used separately to identify and remove signal contribution from extracerebral tissue, and the resulting estimates of cerebral responses are compared to the expected cerebral responses. Both methods were able to reduce extracerebral contribution to the signals, but PCA typically performs equal to or better than ICA. The improvement in 3-cm signal quality achieved with both methods is comparable to increasing the source-detector separation from 3 to 5 cm. Especially PCA appears to be well suited for use in NIRS applications where the cerebral activation is diffuse, such as monitoring of global cerebral oxygenation and hemodynamics. Performance differences between PCA and ICA could be attributed primarily to different criteria for identifying the surface effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.