Abstract

Carbon nanotubes supported iron catalysts were prepared by incipient wetness, deposition/precipitation using K 2CO 3, and deposition/precipitation using urea. The incipient wetness method and the deposition/precipitation technique using urea yielded highly dispersed Fe 3+ on the carbon nanotubes support. The deposition/precipitation technique using K 2CO 3 also yielded larger Fe 2O 3-crystallites. After reduction the three catalysts had similar metal surface areas. Nevertheless, the activity of these catalysts in the Fischer–Tropsch synthesis differed significantly with the catalyst prepared by incipient wetness being the most active one. It is speculated that the differences in the performance of the catalysts might be attributed to the different crystallite size distributions, which would result in a variation in the amount of the different phases present in the catalyst under reaction conditions. The selectivity in the Fischer–Tropsch synthesis over the three catalysts seems to be independent of the method of preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.