Abstract
Aircraft noise has become an increasing concern for commercial airlines. Worldwide demand for quieter aircraft is increasing, making the prediction of engine noise suppression one of the most important fields of research. The Low-Pressure Turbine (LPT) can be an important noise source during the approach condition for commercial aircraft. The National Aeronautics and Space Administration (NASA), Pratt & Whitney (P&W), and Goodrich Aerostructures (Goodrich) conducted a joint program to validate a method for predicting turbine noise attenuation. The method includes noise-source estimation, acoustic treatment impedance prediction, and in-duct noise propagation analysis. Two noise propagation prediction codes, Eversman Finite Element Method (FEM) code [1] and the CDUCT-LaRC [2] code, were used in this study to compare the predicted and the measured turbine noise attenuation from a static engine test. In this paper, the test setup, test configurations and test results are detailed in Section II. A description of the input parameters, including estimated noise modal content (in terms of acoustic potential), and acoustic treatment impedance values are provided in Section III. The prediction-to-test correlation study results are illustrated and discussed in Section IV and V for the FEM and the CDUCT-LaRC codes, respectively, and a summary of the results is presented in Section VI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.