Abstract
Abstract An increasingly amount of evidence supports that the evolution of eusociality is accompanies by shifts in ancient molecular and physiological pathways. The juvenile hormone, one of the most important hormones in the post-embryonic development of insects, attracts the most attention in the context of social organization. Allatoregulatory neuropeptides (Allatotropin, Allatostatin-A and Allatostatin-C) are known to regulate juvenile hormone synthesis and release in insects. In order to clarify the transitions of juvenile hormone synthesis involved in eusocial evolution, the substitutions of amino acid residues and the complexity of post-translational modifications in allatoregulatory neuropeptide receptors were characterized. Both allatotropin and allatostatin receptors are identified in all examined bee species regardless if they are solitary or eusocial. Although the amino acid sequences are highly conserved, phylogenetic results are consistent with the eusocial status. The abundance of predicted post-translational modifications correlates with social complexity except for that in allatostatin-C receptors. Even though the consequences of these specific amino acid substitutions and various post-translational modification complexity have not been studied, they likely contribute to the localizing, binding and coupling characteristics of the receptor groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.