Abstract

A novel extraction device, capillary microextraction of volatiles (CMV) was coupled to a TRIDION-9 GC–MS with a needle trap (NTD) and evaluated for the analysis of ignitable liquids fire debris. The performance of the TRIDION-9 was compared to a benchtop GC–MS using CMV. A system detection limit of ~10 ng for each of 20 key ignitable liquid residue (ILR) compounds was determined for the T9 GC–MS. Dynamic headspace sampling of simulated ILRs was performed in closed and open-air systems. Closed system evaluations the CMV/NTD technique resulted in extraction performance similar to the CMV alone; however, ILR analysis on the T9 was impacted by limited chromatographic resolution. Compound identification was possible for 14 out of the 20 selected compounds on the T9 when 1 µL of a 1% standard accelerant mixture (SAM) was sampled, compared to 17 compounds on the benchtop GC–MS for the same mass loading. Open-air sampling with a modified vapor source resulted in the retention of most compounds with as low as 5 min. sampling, and equilibrium concentrations were reached after 10 min. No significant differences were observed between CMV and CMV/NTD sampling suggesting that the combined technique does not suffer from affinity bias. While the potential of the CMV/NTD extraction coupled to a T9 GC–MS for fire debris analysis was limited by the chromatographic resolution of the instrument, this study serves as proof of concept for the CMV’s potential for the extraction of ILRs in combination with portable GC–MS systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.