Abstract

In this study the effect of exogenous 0.1 mM and 1 mM salicylic acid (SA) treatments were investigated on polyamine (PA) metabolism in tomato (Solanum lycopersicum L. cv. Ailsa Craig) leaves in illuminated or dark environments. The former proved to be sublethal and the latter lethal concentration for tomato leaf tissues. While PA biosynthetic genes, arginine- and ornitine decarboxylases or spermidine- and spermine synthases were highly up-regulated by 1 mM SA, the enzymes participating in PA catabolism, diamine- (DAOs, EC 1.4.3.6) and polyamine oxidases (PAOs, EC 1.5.3.3) displayed higher transcript abundance and enzyme activity at 0.1 mM SA. As a result, putrescine and spermine content but not that of spermidine increased after 1 mM SA application, which proved to be higher in the dark than in the light. H2O2 content produced on the effect of 1 mM SA was significantly higher than at 0.1 mM SA in the light. Since there was no coincidence between H2O2 accumulation and terminal PA catabolism, reactive oxygen species produced by photosynthesis and by other sources had more pronounced effect on H2O2 generation at tissue level than DAOs and PAOs. Accordingly, H2O2 in the absence of NO accumulation contributed to the initiation of defence reactions after 0.1 mM SA treatment, while high SA concentration generated simultaneous increase in H2O2 and NO production in the light, which induced cell death within 24 h in illuminated leaves. However, the appearance of necrotic lesions was delayed in the absence of NO if these plants were kept in darkness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call