Abstract
Abstract In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X ( B x Bx ), Y ( B y By ), and Z ( B z Bz ) plane. Visible enhancement in TEC is noticed in the northern polar latitude when B x < 0 Bx<0 , B y < − 6 nT By<-6\hspace{0.1667em}\text{nT} or B y > 6 nT By>6\hspace{0.1667em}\text{nT} and B z > 0 Bz>0 whereas the southern polar latitude perceives TEC enhancements with B x > 0 Bx>0 , − 6 nT < B y < 6 nT -6\hspace{0.1667em}\text{nT}<By<6\hspace{0.1667em}\text{nT} and B z < 0 Bz<0 . Further investigation reveals the intensity of phase scintillation being more pronounced than the amplitude scintillation during the disturbed geomagnetic conditions with excellent correlation with the temporal variation of TEC at both the stations. Corresponding variations in the parameters are studied in terms of particle precipitation, auroral oval expansion, Joule’s heating phenomena, and other ionospheric parameters. The studies are in line with efforts for improving ionospheric delay error and scintillation modeling and satellite-based positioning accuracies in polar latitudes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.