Abstract

The major nonreduced mucus glycoproteins (mucins) from sputa of cystic fibrosis (CF) and asthmatic patients have been purified to electrophoretic homogeneity and subjected to physical and chemical characterization. The sputum specimens were solubilized in buffer containing 0.22 M KSCN and fractionated on Bio-Gel A-5m, followed by digestion with DNase, rechromatography on the same column, and chromatography on hydroxylapatite. Sodium dodecyl sulfate gel electrophoresis of purified mucins gave a single band. Carbohydrate analyses of the purified mucins showed no significant differences in the sugar components from the two mucins. However, the CF mucin contained substantially higher (11%) sulfate content than that observed for the asthmatic mucin (5.9%). Amino acid analyses indicated that the CF mucin had higher levels of serine plus threonine (35%) as compared to the asthmatic mucin (29%). In contrast, CF mucin contained a lower content of aspartate, glutamate, and glycine than that observed for the asthmatic mucin. Molecular weights of 3.8 X 10(6) and 3.5 X 10(6) were obtained for CF and asthmatic mucins, respectively, from light-scattering studies of mucins in the presence of 6 M guanidine hydrochloride. Reduction of the disulfide bonds of the two mucins did not alter their molecular weights. Liquid chromatographic studies on Sepharose CL2B showed that CF mucin forms aggregates sufficiently large to be excluded from the gel. As compared to the CF mucin, the asthmatic mucin formed fewer of these large aggregates under identical experimental conditions. Reduction and alkylation of the mucins resulted in their inability to form aggregates. The higher state of aggregation of CF mucin may influence the viscoelastic properties of the CF lung's mucus secretions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.