Abstract

Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the skin of river puffer (ASC-RP and PSC-RP) and tiger puffer (ASC-TP and PSC-TP) were extracted and physicochemically examined. Denaturation temperature (Td) for all the collagens was found to be 25.5–29.5 °C, which was lower than that of calf skin collagen (35.9 °C). Electrophoretic patterns indicated all four samples were type I collagen with molecular form of (α1)2α2. FTIR spectra confirmed the extracted collagens had a triple-helical structure, and that the degree of hydrogen bonding in ASC was higher than PSC. All the extracted collagens could aggregate into fibrils with D-periodicity. The fibril formation rate of ASC-RP and PSC-RP was slightly higher than ASC-TP and PSC-TP. Turbidity analysis revealed an increase in fibril formation rate when adding a low concentration of NaCl (less than 300 mM). The fibril formation ability was suppressed with further increasing of NaCl concentration, as illustrated by a reduction in the turbidity and formation degree. SEM analysis confirmed the well-formed interwoven structure of collagen fibrils after 24 h of incubation. Summarizing the experimental results suggested that the extracted collagens from the skin of river puffer and tiger puffer could be considered a viable substitute to mammalian-derived collagens for further use in biomaterial applications.

Highlights

  • Puffer has been widely regarded as top cuisine in East Asia for their palatable taste and abundant nutrition

  • The present study demonstrated that collagen from river puffer and tiger puffer skin had an impressive fibril formation ability under the positive effect of NaCl, but the extent of its influence varied greatly depending on the concentration

  • SDS-PAGE profile and Fourier Transform Infrared Spectroscopy (FTIR) spectra indicated all four samples were undenatured type I collagen with two different α chains, the amount of γ chains in Acid-soluble collagen (ASC)-RP and pepsin-soluble collagen (PSC)-RP was higher than that in acid-soluble collagen from tiger puffer (ASC-TP) and pepsin-soluble collagen from tiger puffer (PSC-TP)

Read more

Summary

Introduction

Puffer has been widely regarded as top cuisine in East Asia for their palatable taste and abundant nutrition. The consumption of puffer had been limited in China for 26 years due to the potential threat of tetrodotoxin (TTX). TTX in wild puffer is accumulated mainly in the liver and ovary, through the food chain, starting from bacteria [1,2]. It has been reported that farmed puffer becomes nontoxic when fed with nontoxic diets in a cultivation environment where TTX-bearing organisms have been eliminated [3]. With the success of modern breeding technology, the production of farmed puffer is growing rapidly. In China, the production of puffer was approximately 22,993 tons in 2016, most of which was exported to Japan, South Korea and other Southeast Asian countries [4,5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call